
POSTER 2012, PRAGUE MAY 17 1

Collision-free Path Planning for Mobile Robots Based on
Extended A* Algorithm

Matous POKORNY1

1Department of Circuit Theory, Czech Technical University, Technická 2, 166 27 Praha, Czech Republic

pokormat@fel.cvut.cz

Abstract. Collision-free path planning algorithm for a mo-
bile robot for Eurobot competition is described in this paper.
Extended A* algorithm implements new methods of repre-
senatation of the robot in a map. The robot is represented
by the real shape and dimensions, not only as one point.
Sofisticated checking of the collision-free path is used. This
approach was implemented and tested in the robot software.
The result is more reliable robot motion in a limited space.

Keywords
Eurobot competition, path planning, A* algorithm,
nonholomic robot, mobile robot, collision-free path.

1. Introduction
The Eurobot competition [1] is a project, which can

participate student teams with their robots. The two au-
tonomous mobile robots compete each other on the one play-
ground. During this competition they try to complete the
prepared tasks. The task is usualy finding and moving the
objects, it is another topic every year. Main meaning of the
Eurobot competition is getting and sharing experinces be-
tween teams and support science and technology. We par-
ticipate in Eurobot competition with our university student
team Flamingos [2].

Path planning for the mobile robots using in this com-
petition has its specification. The playground has dimension
2 m × 3 m, each robot has dimension approximately 30 cm
× 30 cm. Many obstacles are on the playground. It is not
much space for the robot motion, which should be precise
and quickly (one match takes 90 sec.), therefore the path
planning algorithm should determine time-shortest collison-
free path from start to goal point in real-time.

Positions of the hard-placed obstacles are known be-
fore start of the match. Positions of other variable obstacle
are detected by the sensor system of the robot during the
match. The oponent robot is the most important and moving
obstacle on the playground. It is advantageous to save the
positions of all obstacles. They are drawn simply in to the
map, which is saved as grid of the square cells. Each cell

holds information about concrete place on the playground,
for example, obstacle flag, path flag, start point flag and goal
point flag.

Usual A* algorithm is the very suitable for a simple
mobile robot with the circlular shape. Robot is represented
by the point (Xr, Yr) in the map, fig. 1 (a). Circle around the
obstacle is drawn in the map and represents safe surround-
ings, in which must not be a path (referent point of the robot).
The A* algorithm works with the map and checks the ex-
panded map cells for a obstacle flag. This is the principle of
the simple collision-free path planning. We assume a gen-
eral nonholomic mobile robots with the differencial chassis
and polygonal shape. If we use simple approach described
above, safe suroundings (radius of the rotation), fig. 1 (b),
is too big and motion of the robot in limited space on the
playground is not possible.

!

" r

" l

" r

" l

X r Y r ,

X r Y r ,

Y

X

the safe surroundings

(b)

(a)

Fig. 1. Simple mobile robot with the circular shape (a) and gen-
eral mobile robot with the polygonal shape (b).

We should choose another approach. We have com-
plete robot software with simple A* algorithm. Many of
the specific processes and dependencies are implemented in

2 M. Pokorny, Collision-free Path Planning for Mobile Robots Based on Extended A* Algorithm

this complex software. We should choose approch that com-
bines functionality and implementation, because extensive
changes mean a lot of time of debugging. It is short period
for development a new solution. The rules of competition are
issued in October and the Eurobot competition takes place in
May. Simple and reliable solution is preferred.

The robot is represented by real shape, dimensions and
angle of rotation in the map. The bitmap mask rotated to the
required angle represents robot in the memory. Work with
the mask and its rotation is very similar to the method that
is described in [4] and [5], where using neural network. The
map is represented by the grid with a square-shaped cells-
grid of square cells, which hold information like obstacle,
start, goal and path. An approach described in [6] is used
in the similar robot and surroundings with limited space,
but the map is represented by velocity profiles. In [7] force
field is used as map representation, which is filled with data
from two laser finders Hokuyo. Implemented algorithm de-
termines two forces which push out the robot from the ob-
stacles and force robot to turn. The action of first force is on
the robot nose and the action of second force is on the robot
tail. This method is great, but is based on another principles.
It means to change robot conception and software completly.
We assume extended A* algorithm described below.

2. Extended A* algorithm
The extended A* algorithm works with the map, where

the robot is represented by its real shape, real dimensions and
its angle of rotation. This algorithm extends simple A* al-
gorithm to using bitmap masks, which represent robot in the
map. The masks initialization and free expanded cells check-
ing based on using the masks are described below, other parts
are same for both algorithms. It it assumed from reader that
the principle of A* algorithm is known.

Algorithm 1 Initialization of the masks
INPUT: Shape and dimensions of the robot
OUTPUT: Bitmap masks allocated in memory m rot, m 0PI
and m PI4

1: Create vector pattern of mask v m 0PI for angle 0π
based on robot real shape and dimensions

2: Create vector pattern of mask v m PI4 by rotation
v m 0PI by angle π/4

3: Allocate memory for three masks
4: Convert arcs between v m 0PI and v m PI4 to cells of

the rotation mask m rot
5: Convert v m 0PI and v m PI4 to cells of the direct mo-

tion masks m 0PI and m PI4
6: m rot = m rot ∪ m 0PI ∪ m PI4

Robot is represented by the masks in the map. The
mask is set of relative coordinates related to reference point.
Two kind of the masks are used, direct motion mask and ro-
tation mask. Angle of rotation of the mask is increased by

π/4, because the surroundings of eight cells is used. Sixteen
masks are used in all, eight direct motion masks and eight
rotation masks. The mask is in the memory in optimized
format to minimalize memory usage. They share common
parts together. Three masks are saved really in the memory,
alg. 1. The masks are created once during the path plan-
ning algorithm initialization. In the first step, vector patterns
are created based on the real shape and dimensions and then
are converted to bitmap mask based on the map resolution.
Rotation mask is composed from two direct motion mask
rotated by π/4 and four arc, which symbolize the rotation.
Using of this mask assumes that obstacles have minimal di-
ameter of 50 mm (cell 25 mm × 25 mm).

 i = 0, 𝜑i = 0 , forward i = 1, 𝜑i = 7𝜋/4, r i = 2, 𝜑i = 𝜋/4, left

 i = 3, 𝜑i = 3𝜋/2 , right i = 4, 𝜑i = 𝜋/2 , left i = 5, 𝜑i = 5𝜋/4 , right

 i = 6, 𝜑i = 3𝜋/4 , left i = 7, 𝜑i = 𝜋 , right i = 8, 𝜑i = 𝜋 , left

Fig. 2. Algorithm expands the cell (red squere) and check
opened cells (turquoise squere), if they are available by
the masks (dark grey square).

If the robot is represented by one cell in the map, the
expansion is same for all cells. Every expanded cell is tested
tested for an obstacle flag. If we use extended A* algorithm,
the cells are expanded differently, depending on the angle of
rotation and direction of movement. Mask and transforma-
tion are determined and then it is tested for an obstacle flag
in alignment mask in the map.

If the algorithm expands cell in the map, angle of ro-
tation is determined from the coordinates of nbest cell (the
first node in priority list O, the best candidate to expansion)
and currently being processed cell xi. Direct motion mask
m 0PI or m PI4 is used based on the angle of rotation. Mask
m 0PI is chosen for even multiples of π/4 and mask m PI4
is chosen for odd multiples of π/4. The space in front of
the robot is check by the direct motion mask in first step of
the loop. It is tested, if cell from N(nbest) (set of the nodes,
which neighbor with nbest) is available in the direction of
movement.

POSTER 2012, PRAGUE MAY 17 3

Direct motion mask m 0PI (m PI4) has basic orienta-
tion to the angle 0 (π/4). Relative coordinates of the mask is
tranformed by the rotation matrix, which makes rotation of
π/2, then the matrix elements have values of 0, ±1. Com-
bination of two masks m 0PI, m PI4 and rotation matrix can
be used for all eight directions.

The mask is set of integer coordinates related to the
robot reference point (axis of rotation). Absolute coordi-
nates of mask on the playground is determined during the
test. Reference cell is xi for m 0PI and m PI4, nbest for
m rot. Obstacle flag is tested on these coordinates. If test is
positive, position on this cell is declared as unavailable.

Algorithm 2 Extended A* algorithm, cells expansion and
free cells checking

1: Create the masks and save it in to memory
2: . . .
3: repeat
4: Choose nbest from O that f(nbest) ≤ f(n),∀n ∈ O
5: Remove nbest from O and put it in to C
6: Go to end, if nbest = qgoal
7: Determine robot angle of rotation ϕ0 in nbest
8: Choose direct motion mask m 0PI or m PI4

based on ϕ0

9: for i = 0 to 9 do
10: Remove xi from N(nbest), if it is not in C
11: if xi /∈ O then
12: Transform choosen mask to required angle ϕi,

i = 0 direct motion, (−1)i < 0 rotation to the
right, (−1)i > 0 ratation to the left

13: if M(xi, ϕi) ∩ P = ∅ then
14: Add xi to O
15: else
16: Do not test alredy rotation to the left and to the

right based on (−1)i
17: end if
18: else if g(nbest) + c(nbest, xi) < g(xi) then
19: Update backpointer of the node xi to nbest
20: end if
21: Choose rotation mask m rot for next loop step
22: end for
23: until O is not empty

Rotation of the robot is represented by rotation mask
mask rot, which expresses rotation of π/4 (from O to π/4)
and motion forward after the rotation. It is a complete as-
sumed movement. Rotation to the right 〈ϕ,ϕ−π〉 and to the
left 〈ϕ,ϕ + π〉 is tested alternately in the loop based on the
i, fig. 2. Mask rotates by π/4, it is rotation to the neighbor-
ing cell in surroundings of eight cells. If any position during
the rotation is not available, next position in this direction
is not tested. The rotation mask is transformated to the re-
quired angle by rotation matrix as direct motion mask. Mask
inverts around the x axis before transformation for odd mul-
tiples of π/4. One rotation mask and rotation matrix can be
used for all eight directions.

3. Implementation and testing
Described algorithm is implemented as C library based

on the simple A* algorithm. Path planner library is a part of
the complex robot software created by Flamingos team. The
robot software was build for two platforms, common PC like
developer’s notebook and industrial PC. We use PowerPC
(400MHz, 128 MB RAM, 64 MB FLASH) industrial PC as
main robot computer.

Algorithm was tested in the simulator on a PC and in
the real robot. Parts of robot software comunicate together
over the middleware ORTE (OCERA Real-Time Ethernet)
[3], it allows very fast and flexible testing and debuging.
Robot can move on the playgound and robot software runs
on the PC, data from sensors and control signals are transmit-
ted via WiFi over ORTE and display in simulator, especially
information from the map. We need to see all information
on the one place during the debugging of behavior of robot.

Fig. 3. Screenshot from the simulator, robot moves on the play-
ground and software runs on PC. Red line shows the
found path, dark turquoise color shows expanded cells,
obstacles are blue.

Algorithm was tested in the real robot on the play-
ground and robot software runs on the PowerPC industrial
computer. Many obstacles on playground are complex space
for testing. Robot draw all obstacles in the map during the
movement based on data from the laser range finder Hokuyo.
The obstacles can be moving and gradually forget in the map
(shade of blue in the simulator), fig. 3.

The tests showed that the robot can move withnout
problems in very limited space. Algorithm results and
smooth movement affects resolution of the map (cell 25 mm
× 25 mm) and forget time of the obstacles (5 sec.). If algo-
rithm runs on PowerPC, the extended A* algorithm is ten
times slower than the simple A* algorithm in the worst case.
There needs to be done additional optimization.

4 M. Pokorny, Collision-free Path Planning for Mobile Robots Based on Extended A* Algorithm

4. Conclusion
Extended A* algorithm based on simple A* algorithm

was described. Real shape, dimensions and angle of rota-
tion of the robot are represented by bitmap mask, which is
used for checking for free space in the surroundigs of the
robot. Extended A* algorithm was implemented in soft-
ware for robot and tested in the PC simulator and in the real
robot. Tests showed that the robot can move reliably in lim-
ited space on the playground. Further work is to optimize the
computational complexity on the main robot computer. We
should consider to change the principles of robot software
and the algorithm for more complex solution.

Acknowledgements
The work described in the paper was supervised by Ing.

Michal Sojka, Ph.D., Department of Control Engineering,
FEE CTU in Prague and was created within project Eurobot
student team Flamingos. This project was supported by
Ministry of Education of the Czech Republic under project
1M0567 (CAK). The work has been supported by the grant
No. SGS12/143/OHK3/2T/13 of the Czech Technical Uni-
versity in Prague and also has been supported by the research
program No. MSM 6840770012 of the Czech Technical
University in Prague (sponsored by the Ministry of Educa-
tion, Youth and Sports of the Czech Republic).

References
[1] The Eurobot competition website,

http://www.eurobot.org/eng/, March 2012.
[2] The Flamingos robotic team website,

http://flamingos.felk.cvut.cz/, March 2012.
[3] The ORTE project website,

http://www.ocera.org/download/components/WP7/
orte-0.3.1.html, March 2012.

[4] Simon X. Yang and Max Q.H. Meng. Real-Time Collision-Free Motion
Planning of Mobile Robot Using a Neural Dynamics-Based Approach.
In IEEE Transactions On Neural Networks, 2003, vol. 14, no. 6,
p. 1541 – 1552.

[5] C. H. Xuefu Xiang, Jiye Zhang. An efficient system for nonholonomic
mobile robot-path planning. In Proceedings on Intelligent Systems and
Knowledge Engineering ISKE2007, 2007.

[6] K. O. Arras, J. Persson, N. Tomatis, and R. Siegwart. Real-time obsta-
cle avoidance for polygonal robots with a reduced dynamic window. In
Proceedings of the 2002 IEEE International Conference on Robotics
Automation. Washington, DC, 2007, p. 3050 – 3055.

[7] Y. K. Hiroaki Seki and M. Hikizu. Real-time obstacle avoidance us-
ing potencial field for a nonholonomic vehicle. In J. Silvestre-Blanes,
editor, Factory Automation. 2010, p. 523-542.

[8] POKORNÝ, M. Collision-free Trajectory Planning for Mobile Robots.
Diploma thesis, FEE CTU in Prague, 2012.

About Authors. . .

Matouš POKORNÝ

was born 5.1.1986 in Prague. He
graduated Master degree in Sensors
and Instrumentation at FEE CTU
in Prague. He worked on thesis
Collision-free Trajectory Planning for
Mobile Robots. He is member of
the university robotic team Flamin-
gos, which participates in the Eurobot
competition since 2010.

