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Abstract. The paper presents an analysis of EEG signal processing
methods for studying correlations between human muscle and brain ac-
tivity. The main task of this work is to design the methods of EEG signal
processing and to verify them on artificial and real signals. The paper
introduces methods of EEG processing in time and frequency domain.
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1 Introduction

The paper presents an initial study of electroencephalographic (EEG) signal
processing methods for the analysis of correlation between human muscle and
brain activity.

The correlation between muscle and brain activity is one of the most inter-
esting tasks in current biomedical engineering. As it is commonly known the
muscle activity is controlled by the brain. It means the muscle activity has to
correlate with brain activity. Unfortunately the brain activity is very complex
and identifying of the activity respective to the muscle activity is not easy.

The correlation between brain and muscle activity was proved in many pre-
vious studies. The frequent approach is finding the coherence between brain
activity and EMG (electromyogram, the record of muscle activity) signal. The
brain activity is usually represented by the EEG (electroencephalogram, the
electrical record of brain activity), for example [1], [2] and [3], but some studies
presents the research of correlations between muscle activity and brain activity
represented by MEG (magnetoencephalographic) signals [4].

The information about relationship between brain and muscle activity could
help understanding how the brain controls the muscles and also could help rec-
ognizing first stages of many movement disorders (e.g. Parkinson disease and
neuropathy).

Most of the previous studies concerned recognizing human body movements
from EEG signals using two types of movements (e.g. the right index finger distal
movement and right shoulder proximal movement [5]).



The main goal of current research is to assign typical changes of EEG signals
to the type of thumb motion. The thumb movements are not reduced to two
types of motion for this study.

2 Experiment

Brain activity is represented by the EEG signals, the muscle activity is repre-
sented by the parameters of the thumb trajectory.

During the experiment a measured person seats in an upright position. The
arm with observed thumb is supported by an armrest. The thumb moves between
3 positions – stationary states. Each movement is triggered by the synchroniza-
tion pulse. The period of pulses is 6 ± 1 seconds. About 20 % of period is reserved
for movement, the rest 80 % of period is the stay on the position.

The motions are sensed using a pair of standard DV camcorders. The sensed
motions are recorded to a tape and stored to a PC after the experiment. The
thumb trajectory is parameterized based on the processing of video sequences.

The EEG signals and video sequences are synchronized using the common
synchronization signal.

3 Methods

The main task of this study is to separate blocks from EEG signal with the
brain activity sensed during the finger motion and to classify the signals to the
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Fig. 1. Sample signal



classes – separate class for one type of motion. It is evident, that the EEG
signals reflect not only intentional motions, but also all vital functions, artifacts
from eye motions, spontaneous activity etc. In fact the effective signal has lower
amplitude than the signal background. Unfortunately it means that it is very
complicated to find the effective signal.

For these reasons the main idea is to use similar methods as methods for
processing of evoked potentials. The methods are based on two main facts. The
first one is that the EEG signal background is uncorrelated with the effective
signal and the second one is that the effective signal is the same or very similar
for each realization of motion. With this precondition the effective signal could
be mined using the averaging methods. The methods assumes many realizations
of each type of motion and the corresponding EEG signal.

3.1 Averaging in Time Domain

The easiest method is averaging in the time domain. Let’s have N realizations
of signal sn[t], where n = 1 . . .N is the index of realization, for each type of
motion. The effective signal could be computed as simple average

s[t] =
1

N

N∑

n=1

sn[t]. (1)

This method is very simple, with very low computational demands, but the
method is very sensitive to the phase of signal. It means the effective signal has
to start in the same point of each processed segment.
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Fig. 2. Signal with white noise



3.2 Averaging in Frequency Domain

Another method is averaging the signal in the frequency domain using the Power
Spectral Density (PSD). Let’s have the same signal sn[t] as in the previous
example divided to I segments with length J and the respective short time
Fourier transform Sn[i, j], where i = 1 . . . I and j = 1 . . . J . The PSD matrix
Pn[i, j] of signal sn[t] is defined as Pn[i, j] = |Sn[i, j]|2. The PSD of effective
signal could be computed as the average

P [i, j] =
1

N

N∑

n=1

Pn[i, j]. (2)

The method is resistant to the shift of signal, but it has higher computational
demands than averaging in time domain.

4 Evaluation

4.1 Evaluation on Artificial Signals

The EEG signal of eye movements with length more than 20 seconds were used
for preparing artificial signal. The time behaviour and the spectrogram of the
clear signal is shown in figure 1 (sample frequency fs = 128 Hz).
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Fig. 3. Averaging in time domain



N = 50 realizations of the artificial signal were used for the tests. Each
realization was produced by mixing of clear signal with white noise (SNR =
−5 dB). Typical realization of signal with noise is shown in figure 2.

The averaged signal and averaged PSD are shown in figures 3 and 4. All the
algorithms were implemented in the Matlab programming environment.

4.2 Evaluation on Real Signals

The methods were also evaluated on the real dataset. The signals were acquired
during two experiments. The EEG signals were measured using the 10 – 20
electrodes system with the sample frequency fs = 250 Hz. The signal from sen-
somotoric area (electrode C3) was processed.

Each experiment had the length of about 10 min. It means that the signal
database includes about 100 realizations of finger motions in one experiment.
The signals were divided to the segments with respect to proper beginning of
the motion. Information about the beginning of motions was obtained manually
from the video sequences. Each segment was started 0.5 s before the motion
start and finished 1.5 s after the motion start. It guarantees sufficient length of
signal both before and after the motion.

Because the thumb moves between 3 stationary states in the experiment, the
number of observed types of motions were 6 (from each position to any other
in both directions). It means that the database includes about 30 realizations of
each type.
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Fig. 4. Averaging in frequency domain



The results of evaluation on the real data are very preliminary. It could be
supposed that the weak results have several main reasons.

The first one is very small number of realizations in database. It is necessary
to make additional experiment for the proper evaluation in real conditions. The
second one is uncertainty in determination of motion starts. It is principal prob-
lem, but especially for averaging in time domain it is evident that each small
shift in determination of motion start could have great impact to final averaged
signal.

Moreover, some previous studies showed that for some persons the coherence
between brain and muscle activity is very unrecognizable. It is necessary to make
the experiments with more than one measured person.

5 Conclusion

The two averaging methods were designed, implemented and evaluated during
the initial study of EEG signal processing methods. The usability of the methods
was evaluated both on artificial and real signals.

The test on artificial signals produced satisfactory results, but the test on
real signals showed many problems. The most serious one is the requirement of
great number of signal realizations. That means more experiments have to be
performed for better evaluation of methods applied to real signal database.

Using the results from artificial signals it could be assumed that the methods
are usable for finding the correlations between human muscle and brain activity.
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